Уравнения движения жидкостей и газов. Система уравнений Навье-Стокса (уравнения Эйлера)

Уравнения выводятся в рамках механики сплошной среды. В качестве модели выступает текучая модель. Ее свойства должны отражать молекулярную структуру среды и те явления, которые происходят с ними: перемещение, скорость, ускорение. В сплошной среде имеют место бесконечно-малые деформации среды, которые математически определяются тензором деформации. В текущей среде появляется точно такой же тензор, но он определяет деформацию скорости и является тензором скорости деформации.

Бесконечно-малый тензор скорости деформации равен отношению тензоров бесконечно-малой деформации к тензору бесконечно-малого промежутка времени.

Модели сплошной и дискретной среды отличаются тем, что вместо физических величин, сосредоточенных в отдельных точках этой среды мы имеем дело с непрерывным распределением этих величин (скалярные, векторные и тензорные поля).

Деформация – движения среды и связанные с ними отображения, при которых изменяются расстояния между мат. точками. Среда, будучи сплошной, сопротивляется деформации,  и в результате движения в ней появляется внутреннее напряжение. Нужно найти связь между деформацией, скоростью деформирования и напряжением.

Вязкие напряжения – напряжения внутреннего трения – напряжения в сплошной среде, возникающие при движении одних элементов среды относительно других. Зависят не от величины деформации, а от скорости.

Упругая среда – напряжения определяются лишь температурой и якобианом отображения начального напряженного состояния в рассматриваемое деформируемое состояние.

Силы, действующие между двумя соседними частицами тела, будем определять через нормальное и касательное напряжения относительно площадок, ограничивающих эти элементы.

Движение жидкости в среде

Движение с тернием характеризуется напряжением, возникающим в любом (в том числе и достаточно малом) объеме жидкости и деформации, происходящей с этим объемом.

Рассмотрим в некоторый момент времени жидкость в тетраэдре . Действие окружающих жидкостей заменим поверхностными силами, действующими на все грани этого тетраэдра. Рассмотрим грань . Пусть площадь этой грани , и  - нормаль, внешняя относительно грани  и тетраэдра. Тогда  - сила, действующая на грань  со стороны окружающей жидкости.

Ответим на вопрос: как зависит  от направления нормали?

Для ответа запишем уравнение движения малого количества жидкости, массой , с ускорением центра тяжести , тогда  - равнодействующая всех сил, действующих на тетраэдр. Это будут объемные силы (напр. сила тяжести - ) и поверхностные силы:

                          

Возьмем предел от этого выражения, устремив . Получим:

                                                                      

Для покоящейся жидкости нормально площадке  действует гидростатическое давление , направленное  противоположно , и сила давления  (покоящаяся жидкость под гидростатическим давлением).

 

Hosted by uCoz